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Abstract

Machine Learning-based approaches for detection of malware files or execution
of malware have been getting increased attention in both academia and in the
security industry. With an ever-increasing flood of new threats, the promise of these
approaches is to establish a more proactive posture as compared to other methods
such as signatures and heuristics. However, operating Machine Learning systems
in a production environment is not a trivial task and often overlooked in academic
works. In this work, we are giving an overview of the additional requirements,
constraints, and complications stemming from running a Machine Learning model
as part of such a larger system in an industry setting. This includes model-specific
requirements such as target false positive rates, corpus size, and corpus diversity,
and system-specific needs such as false positive/negative mitigation, robustness
and cost of the model generation process, establishment of feedback mechanisms,
deployment considerations, and implementation constraints. Lastly, we touch on
common compliance and contractual considerations.
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1 Introduction
In the early days of computing, the primary intent of malware was to achieve infamy
or to vex computer users. For example, Elk Cloner—initially released in 1982 and
widely considered to be the first computer virus to spread in the wild—infected
Apple II home computers with a harmless (but annoying) boot sector virus that
would display a poem on the computer’s screen every 50th time someone booted
from an infected disk [22].

These relatively innocent times didn’t last for long as businesses adopted PCs
en masse and computers were networked. Smelling opportunity, criminal elements
were soon releasing viruses and other malware for financial gain. The floodgates
were opened in the 1990s with the advent of the internet as a global commercial
network.

Today, cybercrime is a multi-billion dollar industry responsible for causing
economic damage measured in the trillions of dollars. According to projections,
the cost of cybercrime is on track to hit $10.5 trillion annually by 2025 [26]. Moti-
vated by strong financial incentives, threat actors from wide-ranging backgrounds
continuously seek out new ways to abuse computing infrastructure. However, the
damage caused by cybercrime often goes beyond a dollar value, making it an even
bigger concern.

Some nation-states are known to leverage malicious code as a tool for industrial
espionage and theft of intellectual property. Recently it was reported that hackers
linked to the Chinese government had undertaken a three-year campaign to steal
trade secrets from dozens of technology and manufacturing firms in the U.S.,
Europe, and Asia, targeting the aerospace and pharmaceutical sectors [23]. As
2023 wound down, a joint investigation by South Korea and the FBI uncovered a
cyberattack by hackers connected to North Korea’s intelligence office that resulted
in the theft of sensitive data related to anti-aircraft defense systems [30].

Nation-state hackers have also been implicated in attacks on critical infrastruc-
ture. For example, in 2017 in what has been described as the “worst cyberattack
in history,” Russian military hackers known as Sandworm (also known as Voodoo
Bear) released the NotPetya malware against Ukrainian targets. The devastating
malware knocked out infrastructure throughout that country including transport
hubs, at least four hospitals, six power companies, two airports, and most Ukrainian
government agencies. NotPetya quickly propagated globally and in just one casu-
alty beyond Ukraine’s borders, left nearly 800 cargo ships (one fifth of the global
shipping capacity) dead in the water [16].

Criminals use ransomware for the extortion of businesses or password stealers to
gain access to victims’ bank accounts. The business of cybercrime is so lucrative—
and established—that some criminals started specializing in providing tools and
infrastructure to others for such illicit purposes, in the form of “Ransomware-
as-a-Service” or RaaS frameworks. RaaS has now matured to the point that a
range of business models are being used including affiliate programs and monthly
subscription fees [3]. LockBit is one of the better known RaaS variants and has
been responsible for a large percentage of ransomware attacks across the U.S.,
Canada, Australia, and New Zealand since first being spotted in 2020 [13].

Then there is the issue of hands-on-keyboard attacks. Sophisticated cyber-
criminals are able to use legitimate tools to infiltrate networks without the use of
malware. These so-called fileless attacks are extremely hard to detect, especially for
traditional signature-based security software that relies on the detection of known
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malware. Once considered a novel threat, fileless, hands-on keyboard attacks now
make up the majority of observed cyberattacks [11].

In the latest cybercrime development, the advent of Generative AI is providing
attackers with advanced tools such as FraudGPT and WormGPT, which can be
used to generate much more convincing phishing emails and could even be used to
detect network vulnerabilities or create novel malware variants [7].

The financial incentives, potential geopolitical implications, and the improved
tooling that attackers now have at their fingertips have a serious implication for
defenders in the security industry or in academia: we are facing a larger onslaught
of new threats that are unleashed by motivated criminals that seek to identify
evasions of security systems for financial gain. To stem this flood of new threats,
the industry has turned away from an overreliance on traditional, signature-based
detections and begun to embrace Machine Learning (ML)-based approaches.

The use of ML for detection of malware files or execution of malware has been
getting significant attention in both academia and in the security industry—and for
good reason. With an ever-increasing flood of new threats, the promise of Ma-
chine Learning is to establish a more proactive posture as compared to traditional
cybersecurity methodology including signatures and heuristics. In addition, Ma-
chine Learning offers defensive advantages such as the ability to detect and react
to an attack in real-time (without the need of a signature update) and the ability to
identify patterns of attack to predict the behavior of malware. At a time when cy-
berattacks from both criminal elements and state-sponsored groups are on the rise
while organizations also struggle with a global cybersecurity workforce shortage
[17], ML has the ability to augment human analysts and even automate repetitive
tasks—freeing up analyst time. It represents a compelling solution to some of the
biggest challenges faced by the cybersecurity industry.

However, operating Machine Learning systems in a production environment is
not a trivial task and this challenge is often overlooked in academic works.

To address this frequent shortcoming, we are providing an overview of the
additional requirements, constraints, and complications that stem from running a
Machine Learning model as part of such a larger system in an industry setting.
This includes model-specific requirements such as target false positive rates, cor-
pus size, and corpus diversity, in addition to system-specific needs such as false
positive/negative mitigation, robustness and cost of the model generation process,
establishment of feedback mechanisms, deployment considerations, and imple-
mentation constraints. Lastly, we touch on common compliance and contractual
considerations.

2 Considering the Attacker’s Perspective
The purpose of Machine Learning in cybersecurity is ultimately to detect malicious
payloads and behaviors in order to prevent an adversary from achieving their
objective. It is important to recognize this as a conflict where the attacker is human
and acting on specific objectives. Such objectives can be either criminal (such as
a ransomware actor or access broker) or those of a nation state with goals varying
from espionage to sabotage. In this conflict, it is important to recognize several
important facts.

First, the adversary is actively working to avoid detection by defenders. Stop-
ping the execution of a single malware file is not stopping the adversary.
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Second, as in any conflict, the adversary will adapt to the behavior of the
defenders—often in real-time—through command and control systems during an
intrusion. A classic example of this can be seen in the behavior of the adversary
group known as Scattered Spider. In a 2023 joint Cybersecurity Advisory (CSA),
the Federal Bureau of Investigation (FBI) and Cybersecurity and Infrastructure
Security Agency (CISA) warned: “To determine if their activities have been un-
covered and maintain persistence, Scattered Spider threat actors often search the
victim’s Slack, Microsoft Teams, and Microsoft Exchange online for emails or
conversations regarding the threat actor’s intrusion and any security response. The
threat actors frequently join incident remediation and response calls and telecon-
ferences, likely to identify how security teams are hunting them and proactively
develop new avenues of intrusion in response to victim defenses.”[14]

Third, adversaries are persistent and will spend months or even years developing
and gaining access in order to achieve an objective. We saw just how devastating this
persistence can be with the infamous SolarWinds hack in 2020. The supply chain
attack quickly became known as one of the biggest cybersecurity breaches of the
21st century. Attackers targeted SolarWinds’ Orion IT management system, which
was used by over 30,000 organizations (including some U.S. government agencies)
to manage their IT infrastructure. The campaign began with reconnaissance of
the Orion build chain. Then in September 2019 adversaries used the SUNSPOT
malware to insert the SUNBURST backdoor into Orion [12]. The code was not
detected by Orion developers and the backdoor malware ended up being deployed
to SolarWinds customers in an Orion update starting in March 2020. The attack
was finally uncovered in December 2020.

We see active avoidance in many different ways. One way to represent active
avoidance is to consider tactics, techniques, and procedures (TTPs), or the meth-
ods that adversaries use to execute malicious activity. The MITRE Corporation
maintains a knowledge base of tactics and techniques used by adversaries in public
reporting. As of 2023, this library comprehensively documents 201 different high
level techniques and 424 subtechniques in MITRE ATT&CK Enterprise. These
techniques encompass a variety of TTPs, from manipulating certificates to ob-
fuscating files to disabling security systems in an effort to avoid detection. One
specific technique of note is indicator removal, which is a form of operational
security, essentially removing the indicators of compromise, files, logs, or other ev-
idence. This is especially relevant given that to create Machine Learning solutions,
it is necessary to capture examples of the prediction target, such as a compiled file,
script, or log. Further, there are multiple documented techniques of adversarial
ML, essentially attacking the capabilities of the Machine Learning model itself in
an effort to bypass detection.

Hands-on-keyboard attacks require remote access through a reverse shell, some
other command and control system, or a remote administration tool such as Remote
Desktop. Gaining remote access enables the threat actor to interact with the system
directly, without having to be on the physical premises. They are able to respond
to detection by any signature or Machine Learning model by pivoting to alternate
techniques. Of note, these fileless attacks leverage live-off-the-land binaries, or
LOLBins; they use legitimate tools to accomplish malicious activity. Usage of these
tools is effective because the behavior looks extremely similar to legitimate activity
of an IT administrator, such as using PSExec or WMI to remotely execute a process
across the network. From a Machine Learning perspective, differentiating classes
is a harder problem when the clean and dirty classes are almost indistinguishable,

4



especially if instances for training cannot be obtained at scale.
For an adversary to be successful, they only have to be successful once, and

they will continually adapt, creating or mutating payloads. Most Indicators of
Compromise (IoCs) are exposed to a security solution for the first time during an
attack—this makes sense because an IoC represents forensic evidence that security
has already been breached (i.e., the attack was not detected and prevented by the
security solution). This is a byproduct of continual modification in an attempt to
avoid detection and operational security. Training a model or writing a signature
that can successfully classify a months-old threat is not valuable in cyberdefense
unless that same payload or a similar (to the model) payload is used again in an
attempted intrusion. This conflict between adversaries and defenders shows in the
data over time through concept drift and increased cost of security such as false
positives or disruptions to productivity as the adversary works to avoid detection.

3 File-Based versus Fileless Attacks
Traditionally, most cyberattacks have relied on delivering and executing a malware
file on the victim’s machine. Such files can be delivered by download through a
website, as an email attachment, on a USB thumb drive, or through a variety of
other methods. It is this file-based malware that signature-based security solutions
are designed to detect and block.

However, in recent years there has been a growing trend toward employing
fileless (or hands-on-keyboard) attacks. These attacks do not rely on a file being
installed on disk, making them extremely difficult to detect. Signature-based
security solutions that scan for known malware files have no visibility into such an
attack: there is no malware file to find. The only way to effectively detect a fileless
attack is to monitor for suspicious behaviors, which is made even more difficult
because attackers in this case are (mis)using legitimate tools and processes.

We track this data for business and enterprise users. Over the past five years, the
percentage of observed attacks that are hands-on-keyboard rather than file-based
has grown rapidly. In 2019, 40% of attacks were fileless. The following year,
fileless attacks surpassed half of all those observed. By 2023 these hands-on-
keyboard attacks dominated, accounting for 75% of the total [11]. Figure 1 shows
this trend over time.

4 Industry Challenges
Operating Machine Learning-based detectors in an industry setting poses a number
of challenges. Not all of these challenges are unique to industry deployments, but
they may slant what a successful classifier looks like for industry when compared
to academia.

For example, in a production environment, practical issues like being able to
handle a large volume of users or maintaining a high response speed and sys-
tem reliability are very important. Concept drift—the phenomenon where trained
ML models can degrade in performance when exposed to constantly changing
real-world data inputs—has to be accounted for. Of course, ML models used in
production environments will typically have very aggressive detection rate require-
ments, with minimal false positives and false negatives allowable. In addition, there
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Figure 1: Fraction of fileless attacks year over year.

are many issues specific to data handling (such as privacy and geographic location)
that may have little impact in a research or academic setting but are critical when
ML is deployed in a production environment.

We will explore some of the challenges in the following sections.

4.1 Data Preparation and Modeling
When defending against cyberthreats, parts of the data utilized are adversary-
controlled, meaning that the adversary can choose to a certain degree how to
populate it. This has implications on efficacy and possible bypasses, which we
explore in Section 5.3, but it also complicates data processing and data preparation.

4.1.1 Outliers and Errors

Let’s explore executable malware files as an example. Adversaries are largely free
to choose what the file contains, within limitations that the file format imposes
and with the constraint that the malicious code needs to be included in some form.
For example, a malware author has considerable freedom to choose values like file
size, number of resources, or number of sections, which all are commonly used
in some form in typical format-specific ML models. This has an impact on data
scaling as the adversary can introduce a larger number of outliers1. Note that it is
acceptable to the adversary if the outlier-producing malware files are easily detected
since their intent is to poison the corpus. Naive min/max-based normalization or

1The term “outlier” is a slight misnomer since the adversary can easily produce files with such values at
high quantities.
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standardization to 𝜇 = 0 and 𝜎2 = 1 can compress the intrinsic distribution of a
feature so that it is not useful to a classifier. Therefore, it is crucial to use robust
scaling methods such as quantile transforms, or to leverage classifiers that do not
rely on scaling such as tree-based methods.

Next, the ability to control the file content also allows the malware author
to interfere with parsing and featurizing (translating file properties into feature
vectors for ML) the file. Parsing data is a notoriously difficult undertaking, and
an adversary has several routes to evade detection or to increase the cost to the
defender. First, the adversary can introduce errors in the file that break the parsing
process of the detector but that are accepted by the operating system loader. The
result is that the parser rejects the file or that the parser crashes if sufficient error
handling is missing. In the latter case, the detector may be vulnerable to arbitrary
code injection or other attacks[35]. For the former case, the parser should not reject
files that the operating system loader accepts. However, that is a moving target and
can change between operating system versions.

Even compliant files with no format-specific errors can be problematic. As an
example, the Windows Portable Format supports resources organized in a tree that
can have up to 231 levels [5]. A naive parser may expect a much smaller set of
resources. An adversary can then take advantage of this assumption by creating a
malware file that takes a very long time to parse, as the parser investigates the large
number of resource objects in the file. Depending on the implementation, parsing
could time out as a result (analysis of the file fails), or the detector process could
be tied up for an excessively long time (a denial of service attack). Defenders need
to anticipate such compliant but unusual instances.

4.1.2 Volume, Prevalence, and Efficacy

While sample files to build a training corpus for static analysis are easily obtained,
building a corpus for behavioral analysis requires more effort. There are plenty
of malware files to be found, but there are comparably fewer malware executions
occurring in the field. Furthermore, in a real-world setting many potential malware
executions will have already been thwarted by static analysis-based detectors before
a malware file started to execute. A possible remedy is to execute malware in a
sandbox environment, but care needs to be taken to ensure that environment-specific
clues do not leak into the behavioral features extracted from the execution data [21].

In the case of static analysis, files seen in the real world are very diverse, and
modeling such diversity requires larger corpora. Fitting a model to a smaller corpus
that samples some clusters of that diversity can lead to deceptively positive results,
so care needs to be taken that the corpus runs the gamut of real-world diversity.

Given the resources at the disposal of adversaries, detectors need high true
positive rates (TPR). Consider two detectors with TPRs of 99% and 99.9%, respec-
tively. Figure 2 shows the probability that after 𝑛 independent attempts, at least one
attempt is successful (for example, at least one malware file executes). For a TPR
of 99%, after about 𝑛 = 300 attempts, the probability of at least one success is over
95%. For a TPR of 99.9%, that threshold is crossed around 𝑛 = 3000.

For a state-affiliated threat actor or an eCrime ransomware group, creating 300
unique and unrelated malware files is well within their capabilities. Therefore, a
single model—even one with a reasonably high TPR—is not a sufficient detector.
Note that models with significantly lower TPRs still have utility, for example as
part of an ensemble classifier, or as a component of a larger system (“defense in
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Figure 2: Probability of at least a single success after repeated attempts.

depth”).
Next, a detector suitable for field deployment also needs an extremely low false

positive rate (FPR). FPs are disruptive for workers, for example preventing them
from running productivity applications, and they cause alert fatigue for security
analysts. Even for a detector with a relatively low FPR, the detector is prone to
producing a large number of FPs due to the low prevalence of malware.

Consider a behavioral detector designed to stop malware executions that cor-
rectly identifies each one. In other words, it has a TPR of 100%. Table 1 shows the
prevalence of attempted malware launches per platform. For Windows, malware
files account for roughly one execution in 31 million. At an FPR of 0.00001%, this
detector would produce one TP and 3 FPs and hence would only have a precision
of 25% (one in four detections are correct).

Table 1: Malware file executions per platform

Platform Prevalence of Malware File Executions

Windows 1: 31,000,000
Macintosh 1: 72,000,000

The numbers are more favorable if we look at unique files, deduplicated by
their hash value. Table 2 shows this data. For Windows, one in about 4000 files
that were attempted to launch was malicious. As an example, an FPR of 0.1%
would result in 4 unique files to be erroneously identified as malicious, resulting in
a precision of 20%.

8



Table 2: Unique malware files launched per platform

Platform Prevalence of Unique Malware Files Launched

Windows 1: 4,000
Macintosh 1: 18,000

Therefore, when designing ML-based detectors, care needs to be taken with
respect to the expected prevalence. Contextual cues can help, however, in creating
more favorable biases. For example, a file already stored on the hard disk is less
likely to be malware than a file that was just downloaded.

4.2 Operations
Machine Learning Operations (MLOps) are a critical aspect of successfully utilizing
malware classifiers. In a research setting, we commonly focus on creating the best
classifier on a specific dataset. In industry, it is instead critical to create a process
that robustly yields new viable updated models.

Once a model is in production, any possible false positives or false negatives
(FNs) need to be rapidly addressed, generally before there is time to retrain the
model. Hash-based block or allowlisting is an easy option, but malware often adds
randomizations to alter file checksums. Fuzzy hashes such as ssdeep, peHash, or
Lempel-Ziv Jaccard Distance are alternatives that are more robust to such alterations
[29, 34]. Approaches in the model’s feature space are also possible, such as
utilizing the distance from a given centroid. Distance-based algorithms tend to
require pairwise comparison, so a lookup against an allowlist does require 𝑂 (𝑛)
time. Algorithms such as Locality-Sensitive Hashing only require an 𝑂 (1) lookup
to determine set membership.

Some FPs and FNs are identified as part of field feedback, but many new
gaps are uncovered using automated analysis and by human analysts. All this data
needs to be included into the training round for future models. This can shift the
distribution of types of files in the corpus in undesired ways. Therefore, managing
the composition of the corpus is critical to ensure robust delivery of future models.
While a great deal of attention is devoted to improving classifiers and their training,
this critical aspect of corpus management is garnering less consideration.

Upon deployment of a new model, a fraction of detections tends to change.
This results in new FPs and new FNs. First, the modeling process needs to reduce
these changes. Second, prior to release, any remaining FPs and FNs need to be
mitigated lest they cause problems in the field.

Another important metric is training speed. Models that can be trained faster
allow for easier experimentation. If a model shows issues during field testing, a
shorter training time reduces the time to remedy the issues with a replacement
model.

Feature extraction and inference speeds are also critical—especially for models
deployed on endpoints—as they have direct impact on the user experience. The
same goes for the model memory footprint, which corresponds to memory no
longer available to the user of the protected system. A model that requires excessive
memory use can impact system performance and slow other applications, frustrating
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users and adding to the workload of IT staff who respond to complaints. Non-
ML antivirus solutions in particular have attracted the ire of users due to their
large signature databases containing numerous rules that require slow, sequential
evaluation.

4.3 Cost Considerations
False positives occur when a cybersecurity solution flags a file or action as being
a threat, when in fact it is harmless. The problem with FPs is that analysts must
investigate them as though they were a true positive (TP), and that has an impact on
an organization’s security team. False positives increase stress levels (are we under
attack?) and contribute to alert fatigue—this becomes dangerous when those alerts
are ignored. There is also the issue of opportunity cost: any time that analysts
spend investigating FPs is time that they are not available to work on an actual
breach. Analyst shortages and skills gaps only make the problem of chasing false
positives worse.

In 2015, SecurityWeek attempted to put a dollar value to the cost of triaging
and investigating false alerts [20]. This number includes both false positives and
false negatives and doesn’t account for factors like opportunity cost. In addition,
between inflation and increased attack volume, the numbers would be much higher
today. However, it does drive home the point that FPs are costly: according to the
report, U.S. organizations received an average of 16,937 security alerts per week.
They only investigated 705 of those alerts (just 4% of the total), but ended up
wasting 21,000 hours per year at a cost of roughly $1.3 million annually on what
turned out to be false alarms.

The catch is, cybersecurity solutions will have some false positives if they are
to be proactive and able to detect novel threats; an ML model that only detects
known malware is not significantly better than signature-based approaches. The
key is to reach a balance so that an ML model’s FP rate is manageable, yet it is
still able to alert to previously unknown threats. Since ML models are probabilistic
in nature, some security products allow organizations to configure this trade-off in
accordance with their capabilities.

Regardless of whether an organization is a small or medium-sized business,
multinational enterprise, government agency, or a not-for-profit, it faces an en-
vironment where cybersecurity attacks have increased in frequency as well as
complexity. What makes this situation even more challenging is that the relentless
escalation of threats is occurring concurrently with an ongoing global shortage of
trained cybersecurity professionals.

According to the World Economic Forum’s 2023 Global Cybersecurity Out-
look, sectors including electricity, payments, and hospitals are most at risk because
they are experiencing the largest critical gaps in their ability to onboard skilled cy-
bersecurity professionals [6]. As the report points out, this shortage leaves key parts
of our society—critical infrastructure, banking/retail, and healthcare—especially
vulnerable to cyberattacks. To put the scale of this shortage in more concrete terms,
the World Economic Forum report estimates the global shortage of cybersecurity
workers to be 3.4 million.

In addition, retaining cybersecurity professionals is a problem. The existing
talent pool is feeling significant workload pressure, with 70% of cybersecurity
workers reporting feeling overworked and 24% of cybersecurity leaders preparing

10



to leave their jobs as a result of work-related stress [19]. Burnout needs to be
addressed as part of any solution.

The promise of incorporating Machine Learning in cybersecurity solutions
is that doing so augments the capabilities of an organization’s human analysts—
increasing their effectiveness, reducing response times, automating some repetitive
tasks, and helping to fill the gaps left by a shortage of trained cybersecurity workers.
This includes traditional ML and AI approaches that allow the analysis of large
amounts of complex data as well as Generative AI, which can help with automation
and automated reasoning during investigations and response.

5 Malware as an Adversarial Domain
5.1 The Adversary Problem
The domains of malware development and malware-free intrusion are fundamen-
tally driven by adversarial motives. In fact, it has been posited before that:

Individuals and organizations do not have a malware problem. They have
an adversary problem.

Historically, when malware detection was heavily dependent on digital signa-
tures of malware samples, evasion could be as easy as employing a small-scale
function-preserving modification of a sample (hash busting). The adversary was
actively taking measures to evade detection and/or to conduct their activity with-
out detection or interruption, but the method of attack was a malware file—even
if it was one that had been slightly modified to avoid signature-based detection.
The introduction of Machine Learning models (and their ability to rapidly detect
such attacks) has made tactics like these largely ineffective, at least in attacks on
environments protected by commercial cybersecurity products. As a consequence,
evasion requires more sophistication now. On the one hand, this drives the shift
from malware to hands-on-keyboard and fileless attacks. On the other hand, threat
actors can employ weaknesses in ML-based detectors, both for file-based malware
and fileless attacks.

As adversaries explore novel routes to accomplish their objectives, it is critical
for defenders to think beyond specific technical approaches and adopt an adversary-
centric approach to cyber defense. Such an approach seeks to understand the
characteristics of known adversaries, including:

1. Their capabilities (such as technical sophistication and ability to attack dif-
ferent operating systems)

2. Their goals (for example information extraction or functional disruption)

3. The adversary’s available resources and limitations (developers, infrastruc-
ture)

4. The motivations driving their cyberattack campaigns (in most cases the driver
will be financial, the search for trade secrets, or political activism)
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5.2 Malicious Uses of Artificial Intelligence
Adversaries are starting to leverage AI as well. The National Cyber Security Centre
(NCSC) is a UK government organization tasked with protecting the private and
public sectors in that country from computer security threats. In a January 2024
report on the near-term impact of AI on the efficacy of cyber operations, the NCSC
came to the conclusion that Artificial Intelligence will “almost certainly increase
the volume and heighten the impact of cyber attacks over the next two years.” [27]

Among the highlights from the report:

• The AI-based threat through 2025 will come from using AI to evolve and
enhance existing tactics, techniques and procedures (TTPs).

• All types of adversaries (state-sponsored and criminal) at various degrees of
skill level are already employing AI to some degree.

• AI is providing capability uplift for reconnaissance and social engineering
(as seen, for example, in the use of Generative AI to craft much more sophis-
ticated phishing emails).

• More sophisticated use of AI is highly likely to be restricted to more advanced
adversaries for the short term as they have access to both cyberattack and AI
expertise as well as quality training data for ML models.

• These advanced adversaries will be able to use AI to analyze exfiltrated data
more rapidly and more effectively, then use that data to train ML models.

• The commoditization of AI-enabled capability in criminal and commercial
markets will almost certainly make improved capability available to cyber
crime and state actors by 2025.

In addition, the NCSC report notes that “AI has the potential to generate malware
that could evade detection by current security filters, but only if it is trained on
quality exploit data. There is a realistic possibility that highly capable states have
repositories of malware that are large enough to effectively train an AI model for
this purpose.”

We appear to be rapidly approaching a tipping point in the weaponization of
Generative AI. On February 14, 2024, OpenAI announced that it, in partnership
with Microsoft, had shut down the ChatGPT accounts for five different state-
sponsored threat actors, including China and North Korea-based groups. These
adversaries were misusing the AI tool for tasks that included debugging code, gen-
erating scripts, researching ways malware can evade detection, and to understand
publicly available vulnerabilities [28]. In short, this incident shows that adver-
saries have already progressed beyond using AI and ML tools to simply write more
convincing phishing emails.

Given the threat that Machine Learning as a cyber weapon poses, it is under-
standable that the cybersecurity community is working hard to stay on top of what
adversaries are doing in this space.

5.3 Adversarial Machine Learning
With ML becoming a critical technology for defenders, it is also moving into
the crosshairs of adversaries. The field of Adversarial Machine Learning (AML)
investigates the attack methods for different phases of ML operations [33].
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In the cybersecurity application of predictive ML (for example to determine
whether a behavior or a file is clean or suspicious/malicious), the phases of data
collection, model training, and model serving offer possible attack surfaces. These
attack surfaces could include data poisoning, model extraction, or model evasion.

5.3.1 Creating Evasive Files

Looking again at the classification of files using static analysis, while ML is resilient
to traditional hash busting techniques, AML offers novel ML-specific routes to
evade detection. In 2019, researchers from Skylight Cyber provided a real-world
example of how an ML-based security product can be attacked [2]. By reverse
engineering the product, they identified an allowlist of applications. They inferred
that files on the allowlist are also likely to be in the training dataset. Furthermore,
they identified that the detector utilized the presence of specific strings as features.
By adding strings of allowlisted files to a malware file, they were able to successfully
trick the product to misclassify the file.

While this evasion was achieved with significant direction from the attacker,
more automated approaches are possible. For example, if the attacker has access to
the ML model’s confidence value, then the attacker can employ small changes to a
malware file that change the feature vector but not the file behavior and observe if
these changes reduce the confidence the model outputs. Executing this procedure
a large number of times will often eventually yield an evasive file.

If the detector outputs only a yes/no output whether a file is malware, then the
attacker can use these outputs to train a proxy model that outputs a confidence. A
file that successfully evades the proxy model will very often also evade the original
model.

A growing body of research investigates various techniques that can be used to
reliably create evasive files, including:

• Deep reinforcement learning (DRL) such as actor-critic with experience
replay (ACER) was used to generate evasive portable executable (PE) samples
[1]: the authors used different datasets of malware families to train agents and
tested on holdout samples not seen during the training phase. The evasion
rate on the holdout samples ranged between 10% and 24% and were found
to be greater than for a random agent (9% to 23%).

• Double deep Q-network (DDQN) was used for content injection in PDFs [25]
and compared to Deep q-network (DQN) and Deep SARSA (state, action,
reward, state, action): while all three methods showed good learning out-
comes, the average steps required to generate an evasive sample was different
ranging from 14 for DDQN, 15 for deep SARSA, and 17 for DQN. Impor-
tantly, the authors also investigated the evasive success over time, decreasing
from 93% after one year to 87% after five years, and demonstrated that reg-
ular training continuation (or online fine-tuning) alleviates this performance
decay somewhat, achieving 99% and 97% evasion rates after one and five
years, respectively.

• More classic reinforcement learning (RL) methods such as the multi-armed
bandit (MAB) were applied for PE [31]: the authors achieved evasion rates
of 74% to 98% for the EMBER and MalConv datasets, respectively, which
compare favorably with the success rates of a random agent (15% to 33%).
Importantly, the authors suggest an algorithm to post-process an evasive
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sample that was generated with a sequence of modification steps from an
original sample: the action minimization seeks to (1) remove actions from
the sequence that are not needed to obtain a classification evasion and (2)
replace an action with a microaction, if applicable (for example, append
several bytes of overlay at the end of binary −→ minimize to append only one
byte) if the new sample evades classification. In this manner, the adversarial
samples obtained are more similar to the original, unmodified sample.

• Population-based training (PBT) such as Genetic Programming (GP) for PE
[8]: for each PE sample from a training dataset, an initial population was
generated by applying different adversarial modifications. Then, for several
iteration steps, the modified sample population was evaluated (according to a
fitness function including whether the modified sample is evades detection or
not), subjected to a selection process (removing a proportion of samples with
lower fitness scores), and processed via crossover (swapping modification
steps between samples), mutation (replacing a proportion of modification
steps with a random modification) and reproduction (to bring the population
size back up). This multi-step workflow depends on a number of hyperpa-
rameters that warrant exploring and tuning: population size, mutation rate,
crossover rate, reproduction rate. The authors demonstrated that their ap-
proach allows them to generate more varied and more valid malware samples
than can be obtained with random modifications. They also highlighted that
samples obtained from learning to evade one commercial classifier lead to
high evasion rates with two other commercial classifiers with cross-evasion
rates ranging from 25% to 83%.

5.3.2 Adversarial Training

It is possible to evade at least some real-world detectors by repeatedly employing
some modification and obfuscation techniques that result in a file’s feature vector
to change. For PE files, examples of modifications include:

• Modify header: for example, change metadata or file characteristics

• Add overlay: for example, add bytes to the end of the file

• Add section: adding a block of code or data to the file

• Rename section: changing the name of a section

• Obfuscate imports: hiding what library functions the executable invokes

One way to increase the robustness of a classifier with respect to evasive samples
is the enrichment of the model training corpus with modified samples, so called
adversarial training. Our production pipeline includes a common framework that
automates the creation and inclusion of such samples, applying more than 100,000
permutations of obfuscation techniques to various file formats. For comparison,
we observed that some real-world detectors fail to detect adversarial samples with
as little as 30 bytes of modifications to the sample.

On the one hand, the common adversarial framework allows us to anticipate
possible susceptibility of a candidate classifier to particular AML attacks. Further-
more, results can highlight possible new avenues for feature engineering, if needed.
On the other hand, the generation of modified samples in bulk allows enrichment
of the model training corpus.
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Table 3: Partial area under the curve (pAUC) for a binary classifier trained
with standard samples or standard and adversarially modified samples and
evaluated on a separate holdout set of unmodified or modified samples (closer
to one is better).

Holdout Set
Training Set Standard Adversarial

Standard 0.97175 0.92012
Std + Adv 0.97700 0.98486

In our analyses we have repeatedly observed that an adversarially trained clas-
sifier not only shows better detection rates for new holdout adversarial samples, but
also demonstrates better predictive power on the holdout set of unmodified sam-
ples. Table 3 shows the results of one such study. Introducing adversarial samples
during training increased the partial area under the curve (pAUC) by more than 5
in 1,000. Additionally, the enrichment can improve the training corpus quality, for
example with respect to label balance of a nascent malware family with fewer than
1,000 samples collected from sources in the wild.

During the data collection phase, data scientists and security/malware re-
searchers work closely together to combine near real-time sample feeds and process
them via triage, evaluation, analysis, and ultimately selection for inclusion in a clas-
sifier model training and evaluation phase.

The integrity and validation of the processing workflow are important to re-
duce the risk of data poisoning. The latter refers to adversary methods aiming
to compromise the model performance during the serving phase by introducing
targeted samples into the training process. Continuous monitoring of feature drift
and anomalies or outliers together with similarity and clustering supports scalable
analysis and processing of a large sample corpus. The sample similarity analysis
can be performed at various levels: fuzzy hash similarity, static feature similarity
(based on static sample analysis), behavioral feature similarity (for example, based
on events recorded during detonation in a sandbox environment [15]), or statistical
model decision path similarity (for example, leaf similarity in tree-based classifiers
such as xgboost [10]).

6 Compliance
When operating in a production environment, data processing activities must be
compliant with various laws and regulations. This includes adherence to interna-
tional privacy laws (e.g. GDPR) as well as upcoming AI regulation and guidance.
The activities must also fulfill contractual obligations. These requirements have
impacts on building corpora and on inference, which we explore in this section.

6.1 Storage of Sensitive Information
Looking at static analysis of executable files, many files for malware and clean
applications can be easily obtained to build a corpus. Websites such as Hybrid
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Analysis or VirusTotal are popular sources for files. However, it is not always
possible to get samples of internal applications of customers, for example in cases
where these applications contain confidential intellectual property or trade secrets.
This issue is even more pronounced when classifying document files. As a re-
sult, mitigating misclassifications is more complicated and files cannot easily be
analyzed to validate that they are indeed of the correct class.

If there are no changes to the feature space, building a corpus of feature vectors
instead of samples can be a workaround to get such files into training. Files
are transformed into feature vectors, which are transmitted to the cloud without
revealing sensitive or protected information (such as personal information) that
may be contained within these files. However, while this approach enables training
based on customer feedback, it does not allow analysts to validate the correctness
of the feedback by reverse engineering of the sample. This is especially of concern
with surreptitious attacks in mind, where deeper validation is often required.

For behavioral classification, parts of the pertinent data can be subject to legal or
contractual data retention and deletion requirements. Those parts cannot be lever-
aged in a compliant manner for building up a training corpus due to their ephemeral
nature unless all legitimate interests and objectives are considered in a positive-sum
“win-win” manner as outlined by Ann Cavoukian in her 7 Foundational Principles
of Privacy by Design for Implementation and Mapping of Fair Information Prac-
tices [9]. Privacy is often positioned in a zero-sum manner as having to compete
with other legitimate interests, design objectives, and technical capabilities in a
given domain. Ann Cavoukian’s Privacy by Design idea rejects taking such an
approach—it embraces legitimate non-privacy objectives and accommodates them
in an innovative positive-sum manner.

For the data that can be retained, it needs to be ensured that personal iden-
tifiable information is removed, in order to mitigate the risk of legal challenges
associated with reidentification of individuals within datasets. For instance, this
can be achieved by scrubbing based on known/expected locations for personally
identifiable information/sensitive content. File subpaths under \Users, /Users,
/home, etc. that commonly contain user names must be replaced with a generic
string. Telemetry containing customer IDs or endpoint IDs should be removed or
replaced in an irreversible manner in order to dissociate the data from a particular
customer environment. In addition to the scrubbing routines employed, a regular
review cadence can help to identify any potentially missed personally identifiable
information/sensitive content for manual removal.

In parallel, for the data that can be retained and should be used, further legal
conditions and limitations must be reflected.

6.1.1 Cross-Border Data Transfer

Data collection and use can be limited by cross-border data transfer regulation.
Various jurisdictions and the European Union (EU) require certain safeguards for
transferring personal information of their residents to third countries. To that end,
data collection must be well prepared based on diligent legal review and actions for
safeguarding international data transfers.
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6.1.2 Data Localization

To date, only very few jurisdictions (e.g. the Russian Federation) apply data res-
idence legal requirements that require processing data including personal infor-
mation in a certain territory. However, several jurisdictions and supranational
organizations such as the European Union are considering data localization re-
quirements, which can impose that certain data may be processed only within a
specific territory. This would pose several burdens on use of data for training and
Machine Learning and AI approaches. First, at training time, several corpora (one
per affected territory) would be required, reducing the size of the available training
dataset. Second, at inference time, features at global scale could no longer be
effectively computed [32].

6.2 Lawful Processing
Globally accepted privacy principles require the lawful processing of personal
information. For instance, the EU General Data Protection Regulation (GDPR)
only allows processing of personal information if processing is agreed between
parties and necessary for the performance of a contract, the data subject has given
consent to the processing of his or her personal data for Machine Learning purposes,
or processing is presumably necessary for the purposes of the legitimate interests
pursued by the body who intends to use the data for Machine Learning purposes.
However, relying on legitimate interest requires accountability in terms of having
the ability to demonstrate that there are no overriding interests or fundamental
rights and freedoms of the data subject, which require protection of its personal
data. In this respect, it shall be taken into account that the French data protection
authority (Commission Nationale de l’Informatique et des Libertés - CNIL) issued
guidance on the reuse of personal data by service providers for their own purposes
under the GDPR. The guidance addresses the use of personal data for purposes
broader than just strictly providing services; for example, to improve products or
services or train artificial intelligence and machine learning algorithms [24].

Finally, GDPR’s emphasis on transparency and accountability requires organi-
zations to provide clear and understandable information to individuals about how
their data is being used in AI systems, including the purpose of processing, the
legal basis for processing, and individuals’ rights about their data.

6.3 AI Regulation
Similarly, the EU AI Act (the “Act”) will regulate and govern the development and
deployment of Artificial Intelligence systems within the European Union. The Act
defines covered parties as either providers or deployers of AI systems and applies
if such a party is established in the EU, or if the output produced by such party’s
AI system is used in the EU.

The Act adopts a classification system and imposes different compliance obli-
gations on covered parties, depending on the risks presented by the AI system in
question. AI systems can be classified as “Prohibited” or “High-Risk” under the
Act. Even where an AI system does not fall under one of these risk categorizations
(and is therefore not a regulated system under the Act), it may still be subject to
overarching transparency obligations (for example, where it interacts with humans
or produces AI-generated content).
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Under the Act, organizations are required to adhere to stringent guidelines when
using personal data to train and deploy AI models, ensuring transparency, fairness,
and respect for individuals’ privacy rights.

Developers of AI systems would be prohibited from deploying AI systems that
present unacceptable risks to the fundamental rights of individuals. Examples of
“prohibited AI systems” include systems that are used for social scoring based
on social behavior or personal characteristics; AI systems designed to explore
vulnerabilities that result in significant harm and the material distortion of behavior;
and AI systems that engage in the untargeted scraping of facial images from the
internet or CCTV footage to create facial recognition databases [18].

Deployers of “high-risk AI systems” will have a significant number of direct
obligations under the AI Act, including the obligations to implement risk mitigation,
ensure that datasets are high quality, log activity with detailed documentation,
assign human oversight of the AI system to a person with the necessary competence,
training, authority and support; and to provide clear information for users [4].

Examples of high-risk AI systems (as listed in Annex III of the Act) include,
but are not limited to, systems intended to be used as safety components in the
management and operation of critical digital infrastructure, road traffic, and the
supply of water, gas, heating, or electricity; AI systems used to monitor prohibited
behavior of students during tests in the context of/within education and vocational
training institutions; AI systems intended to be used for recruitment of and evalu-
ating the performance of employees; and AI systems intended to be used by public
authorities to evaluate the eligibility of individuals for essential public assistance
benefits and services, including healthcare services [18].

AI systems that are not high-risk but pose transparency risks will be subject to
specific transparency requirements under the Act. Deployers of AI systems that are
intended to directly interact with individuals and act like a human (such as chatbots)
or AI systems designed to generate content (e.g., to prepare news articles) will be
required to inform users they are interacting with a machine. Deepfakes must be
labeled, and users must be informed when a biometric categorization or emotion
recognition system is used [18]. This information must be provided to users in a
clear and distinguishable manner at the latest when the user first interacts with the
AI system or is exposed to the AI-generated content.

7 Conclusions
As an increasing number of financially or politically motivated adversaries create
more plentiful and more sophisticated threats, Machine Learning-based malware
and cyberattack detection is becoming an increasingly important tool to defend
systems and networks.

Machine Learning is proving to be the most valuable new weapon in the cy-
berdefense arsenal, acting as a force multiplier that also supports a much more
proactive approach to defending against cyberattacks. The promise of ML is
considerable, however what is often missing from the conversation is the added
complexity of deploying a Machine Learning model in a production environment.
The reality is that bringing ML to the frontlines in the real world requires additional
considerations beyond creating a single suitable model. Success in an academic or
research setting does not necessarily translate to an ML model that will perform to
high standards in real life use.
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We have provided a detailed explanation of the many additional requirements,
constraints, and complications that will typically be encountered for an ML model
to be successfully deployed in production, as well as the relevant context for each.
This includes the rapidly growing range of TTPs employed by attackers, the need for
extremely high true positive rates, the cost of false positives, adversarial ML, risk of
data poisoning during model training, legal regulations for data processing/storage
requirements, and more.

We believe that by highlighting the additional challenges of productionizing
Machine Learning models, further avenues for research in this exciting field will be
explored and the cause of deploying ML in a cybersecurity setting will be advanced.
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